Revista de medicina regenerativa

Microvascular Effect After the Application of Cell Therapy with A Concentrate of Hematopoietic Stem Cells in Patients with Peripheral Arterial Disease with Non-Critical Limb Ischemia and Diabetes

Lauro Fabián Amador Medina1 *, Blanca Olivia Murillo Ortíz1 , Luis Carlos Padierna García2 , Carlos Villaseñor Mora2 , Enrique Castro Camus3 , Goretti Hernández Cardoso3 , Juan Manuel Malacara Hernindez4 and M ar a del Rosario Sinchez Navrro5

Background: Bone marrow derived cell therapy is an experimental treatment for critical limb ischemia. Little is known about the microvascular changes in hematopoietic stem cell (HSC) therapy obtained from the bone marrow in peripheral arterial disease (PAD) with non-critical limb ischemia and type 2 diabetes mellitus. Objective: To evaluate the microvascular effect after the application of cell therapy with a concentrate of hematopoietic stem cells in patients with PAD with non-critical limb ischemia and diabetes. Methods: Patients were randomly to receive HSC therapy, in addition to standard care, or standard care alone. HSC therapy consisted of intramuscular application to the lower extremities of a concentrated obtained from bone marrow stimulated with granulocyte colony stimulating factor. Microvascular evaluations were performed after 6 to 8 weeks by means of infrared imaging, Terahertz imaging and Doppler ultrasound of interdigitalarteries. Results: A total of 24 patients who met the inclusion criteria were randomized to the study groups. The microvascular effect evaluated by Doppler ultrasound of the interdigital arteries showed a decrease in the resistance index of the right foot (0.80 vs 0.71; p = 0.02), of the left foot (0.83 vs 0.75; p = 0.004), with a beneficial effect on the therapy group. No beneficial microvascular changes evaluated with the other methods were demonstrated. Conclusions: The application of cell therapy with hematopoietic stem cells in patients with Peripheral Arterial Disease with noncritical limb ischemia and Diabetes shows beneficial microvascular changes, under demonstrable evaluation via Doppler ultrasound